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Site-specific online compressive beam codebook
learning in mmWave vehicular communication

Yuyang Wang, Nitin Jonathan Myers, Nuria González-Prelcic,
and Robert W. Heath Jr.

Abstract—Millimeter wave (mmWave) communication is one
viable solution to support Gbps sensor data sharing in vehicular
networks. The use of large antenna arrays at mmWave and
high mobility in vehicular communication make it challenging to
design fast beam alignment solutions. In this paper, we propose
a novel framework that learns the channel angle-of-departure
(AoD) statistics at a base station (BS) and uses this information
to efficiently acquire channel measurements. Our framework
integrates online learning for compressive sensing (CS) codebook
learning and the optimized codebook is used for CS-based beam
alignment. We formulate a CS matrix optimization problem
based on the AoD statistics available at the BS. Furthermore,
based on the CS channel measurements, we develop techniques
to update and learn such channel AoD statistics at the BS. We
use the upper confidence bound (UCB) algorithm to learn the
AoD statistics and the CS matrix. Numerical results show that
the CS matrix in the proposed framework provides faster beam
alignment than standard CS matrix designs. Simulation results
indicate that the proposed beam training technique can reduce
overhead by 80% compared to exhaustive beam search, and 70%
compared to standard CS solutions that do not exploit any AoD
statistics.

I. INTRODUCTION

With the availability of a large amount of bandwidth,
mmWave communication can support massive sensor data
sharing in vehicular networks [1]–[3]. Due to the large antenna
arrays deployed at mmWave and the high mobility in vehicular
settings, fast and efficient beam alignment strategies have
to be designed [4]. For example, exhaustive search-based
beam alignment where a radio scans through all the beams
from a pre-defined codebook can result in substantial training
overhead. The exhaustive search-based solution may not be
suitable for mmWave vehicular communication due to a large
number of candidates in typical beam codebooks. The mobile
nature of terminals in a vehicular setting can impose a strict
timing constraint for the beam alignment problem. As a
result, exhaustive search-based beam alignment may not meet
requirements like low latency and high reliability expected in
mmWave vehicular networks [5], [6].

Fast beam alignment in mmWave communication can
be achieved through compressed sensing (CS) or side
information-aided beam search. CS-based beam alignment
solutions exploit sparsity of mmWave channels and require
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less training overhead than exhaustive search [7], [8]. The
performance of CS-based solutions depends on the choice of
the CS matrix used to obtain channel measurements. Side
information, ubiquitous in vehicular communication, can be
exploited for efficient mmWave channel estimation or beam
alignment [8]–[13]. Different types of side information can be
obtained from sensors mounted on vehicles, including radar,
LiDAR and GPS [14]–[18]. Side information can be shared
among vehicles by different wireless protocols such as dedi-
cated short-range communication (DSRC), LTE or mmWave
communication [1]. Situational awareness of vehicles can also
be leveraged to extract environment information and further
narrow down the beam search space and reduce beam training
overhead [11], [12], [19]–[21]. One limitation of the side
information-aided beam selection solutions is that they rely
on fully-connected vehicles to share sensor data and enable
sensor fusion. Second, none of the approaches leverage the
spatial structures associated with vehicular channels for beam
selection.

Vehicles channels are temporally correlated, which makes
online learning a potential candidate for link configuration in
vehicular settings [22]–[24]. Using online learning, a radio
can dynamically adapt to the new channel statistics. In [25],
beam selection was performed using vehicle arrival directions.
In [21] and [26], receiver location was used for online beam
selection in mmWave vehicular communication. Such online
learning-based beam alignment solutions, however, do not
exploit the sparsity of mmWave channels. Algorithms that
integrate online learning-based solutions with sparsity-aware
solutions may further reduce the training overhead.

In this paper, we assume a vehicular communication setting
where a BS serves vehicles in its coverage area. We propose
an online beam alignment framework that leverages channel
sparsity and the angle domain statistics of the channel. Using
our framework, the BS learns the AoD distribution of the paths
corresponding to the vehicles in its coverage area. The AoD
distribution learned at the BS is further used to optimize the CS
matrix. It is important to note that the proposed approach only
uses CS-based channel measurements acquired at mmWave,
which are used for beam alignment. As a result, our framework
does not require fully-connected vehicles, frequent sensor or
out-of-band information sharing [8], [21], [26]. We assume
that AoD distribution learning and CS-based computations are
implemented at the centralized infrastructure, i.e., the BS. The
main contributions of our work can be summarized as follows.
• We propose a novel solution for mmWave beam align-

ment leveraging an online learning-based CS matrix
design. We develop a 2D-convolutional CS (2D-CCS)
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technique that optimize the CS matrix based on the
AoD distribution learned at the BS. According to the CS
matrix design, the BS applies beam training vectors for
the users to acquire compressive channel measurements.
Subsequently, the BS updates the AoD statistics based
on the channel feedback received from the users. The
optimized CS matrix can be obtained when the estimation
of AoD distribution converges.

• We show that online CS matrix learning using our
framework is analogous to a MAB problem [27]. We
use the UCB algorithm for online CS matrix learning
and investigate different exploration-exploitation methods
to estimate the AoD distribution [28]. Furthermore, we
propose solutions to calculate the CS matrix using a
variation of the estimated AoD distribution with a reduced
number of measurements. We apply different exploration
terms to UCB based on the levels of confidence in the
AoD distribution learning.

• We validate our proposed solution with comprehensive
simulations. We demonstrate superior performance of
the proposed solution over exhaustive beam search and
conventional CS using the exact AoD prior. We show
that the proposed online learning-based AoD distribu-
tion estimation technique converges to the ground truth
using a statistical distance metric. Last, we evaluate
the effectiveness of the proposed exploration-exploitation
methods.

We would like to highlight that our online learning-based
solution is different from the common adaptive CS setting
in which the rows of a CS matrix are modified during
signal acquisition [29]. Such an approach requires continuous
feedback and may result in a substantial training overhead.
In our framework, the CS matrix at the BS remains constant
during the beam alignment process of any receiver, and is
updated across different channel instances.

The rest of the paper is organized as follows. The problem
is motivated in Section II, which demonstrates a specific
structure in the AoD distribution at the BS that can be lever-
aged for data-driven CS in mmWave vehicular communication.
The system model is explained in Section II-A. The channel
model is provided in Section II-B. A new CS solution that is
well-suited to the AoD prior is proposed in Section III. The
online CS matrix learning problem is introduced in Section
IV. The application of UCB for the online sensing matrix
learning is shown in Section IV-A and Section IV-B. The
exploration-exploitation tradeoff is explained in Section IV-C.
Comprehensive numerical results are demonstrated in Section
V. The final conclusions are drawn in Section VI.

Notation: A is a matrix, a is a column vector and a,A
denote scalars. Using this notation AT ,A and A∗ represent
the transpose, conjugate and conjugate transpose of A. The
scalar am or a[m] denotes the mth element of a. The `2 norm
of a is denoted by ‖a‖2. The scalar A (k, `) denotes the entry
of A in the kth row and `th column. The matrix |A| contains
the element-wise magnitude of A, i.e., |A|k,` = |Ak,`|. The
`1 norm of A is denoted by ‖A‖1. The Frobenius norm
is denoted by ‖A‖F. The inner product of two matrices A
and B is defined as 〈A,B〉 =

∑
k,`A (k, `)B (k, `). The

symbols � and ~ are used for the Hadamard product and
2D circular convolution [30]. The set [N ] denotes the set of
integers {0, 1, 2, ..., N − 1}. The matrix UN ∈ CN×N denotes
the unitary Discrete Fourier Transform (DFT) matrix. Denote
ωN = e−2jπ/N , we define the DFT matrix as UN (j, k) =
ωjk

N√
N
, j, k ∈ [N ]. Cross product of two sets is denoted as ×.

II. MOTIVATION AND DATASET ESTABLISHMENT

In this section, we first explain the motivation of the work.
We then describe our ray tracing simulation setup developed
to collect vehicular channel data. Finally, we describe how the
channels are computed from the ray tracing data to generate
the channel dataset.

Channel statistics in vehicular communication follows reg-
ular patterns that are dependent on the site-specific environ-
ments [31]–[33]. We consider a scenario where a BS is de-
ployed at road side to provide data services to passing-by vehi-
cles that are equipped with mmWave communication devices.
In most cellular scenarios, users can be located anywhere in the
whole coverage area. For vehicular communication, however,
vehicles travel on predetermined lanes that occupy only a small
portion of the entire coverage area. In this case, the distribution
of vehicle locations follows a statistical pattern that is related
to the road layouts. Such statistical pattern of vehicle location
distribution provides some informative and useful prior on
the AoD corresponding to BS-vehicle links. In this paper, we
mainly consider the transmit-side beam alignment in mmWave
vehicular communication. We can observe from the dataset
that there is certain statistical pattern in the AoD distribution
related to street layout, which is associated with the stationary
roadside BS. For the receiver side, however, since vehicles are
highly mobile and are distributed at different locations, it is
difficult to model the angle prior at the receiver side without
the availability of accurate receiver location. Furthermore, even
with the availability of the receiver location, it is not easy
to predict the angle-of-arrival (AoA) in the channel. This is
because the AoA also depends on the orientation of the receive
array.

The availability of an informative AoD prior in mmWave
vehicular communication settings can be helpful for efficient
beam alignment or channel estimation algorithms design. For
example, weighted sparse recovery techniques that exploit
such a prior can be used instead of standard CS algorithms
for mmWave link configuration [8]. Furthermore, the beam
training vectors used to acquire channel measurements can
be optimized to increase the probability of successful align-
ment. Determining the AoD prior in vehicular communication
scenarios, however, can be challenging. A ray tracing-based
approach to compute the AoD prior can be prohibitive in
practical settings, as it may require accurate models for the
surfaces of all the reflectors. The framework proposed in this
paper learns the AoD prior online using compressed channel
measurements, and can potentially adapt to new environments.

A. Simulation setup

We use Wireless Insite, a commercial ray tracing simulator,
to establish the channel dataset for evaluation. Ray tracing
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simulation projects rays from the BS to the physical environ-
ment and calculates the channel path information, including
path gain, angle-of-arrival (AoA) and AoD between the BS
and the vehicles. We consider a street layout with two straight
lanes in an urban canyon.

In the simulation, the buildings are modeled by cuboids
with a concrete exterior. The simulation includes two types
of vehicles: high trucks and low cars (e.g., sedans). For
simplicity, all the vehicles are modeled as cuboids with metal
exteriors. In each simulation, the type of vehicle (truck and
car) is determined by a Bernoulli random variable with a
predefined probability. The distance between adjacent vehicles
is modeled by an Erlang distribution toform a sequence of
vehicles on both lanes. More details of the ray tracing setup
can be found in [12]. Our framework can be applied in any
realistic vehicular environment as it learns the underlying AoD
distribution from the channel measurements. We assume that
the BS is mounted on top of street-side lamp-posts, which are
higher than buses and are dotted around in cities. Receivers
are placed on the roof of the vehicles. A particular realization
of this simulation setup is shown in in Fig. 1.

Fig. 1. Illustration of the ray tracing setup in which cars and trucks are
randomly dropped in the two lanes of the urban canyon. Receivers are mounted
on the top center of the low vehicle. The BS is mounted on a street-side lamp-
post. The figure illustrates the top five strongest paths of the channel for a
certain receiver. Our channel model includes the effect of multiple reflections
that occur at the buildings and the vehicles.

B. Channel model

We assume that the BS is equipped with a uniform planar
array (UPA) of size Nx×Ny. For ease of notation, we assume
that the UPA has the same number of antennas along the
azimuth and elevation dimensions, i.e., Nx = N and Ny = N .
The derivation, however, is not subject to the square antenna
constraint. We consider an analog beamforming architecture
at the BS. In such an architecture, every antenna of the UPA
is connected to a single radio frequency chain through a phase
shifter. The use of phase shifters allows the BS to generate a
variety of beams that can be used for initial access or data
transmission.

Therefore, under the multiple-input single output (MISO)
system assumption, the antenna domain channel can be repre-
sented as a vector h ∈ CN2×1. The channel vector h can be
reshaped into a matrix H ∈ CN×N . The rows and the columns

of H correspond to the elevation and the azimuth dimensions
of the UPA. Note that the (r, c)th entry of H represents
the channel coefficient between the (r, c)th antenna at the
transmitter and the receiver antenna. The matrix representation
of the MISO channel allows us to better explain the ideas
underlying our beam training design. We consider both LOS
and NLOS channels in our simulations.

We assume that the channel can be modeled using Lp paths
in the propagation environment. We denote the channel gain of
the `-th path as α`, the phase as β`, the azimuth AoD as φ`,
and the elevation AoD as θ`. We assume a half-wavelength
spaced UPA at the BS to define the Vandermonde vector
aN (∆) as

aN (∆) = [1, ejπ∆, e2jπ∆, · · · , e(N−1)jπ∆]. (1)

Assuming the channel is narrowband, the MISO channel
between the BS and the receiver can be expressed as

H =

Lp∑
`=1

α`e
jβ`aN (cos θ`)aN (sin θ` cosφ`)

T
. (2)

It should be noted that we can extend our framework to
the wideband case using the frame structure in [34]. The
techniques proposed in this paper estimate the N×N channel
matrix in (2). This approximation is used to update the AoD
distribution, which is further used for efficient beam alignment.

The BS applies different phase shift matrices to its antenna
array in M � N2 successive training slots for channel esti-
mation. The receiver measures the projections of the channel
on each of the phase shift matrices used by the BS. Finally,
the receiver feedbacks the vector of M channel measurements
to the BS for beam alignment in the control channel. In the
m-th measurement slot, 1 ≤ m ≤ M , the phase shift matrix
is represented as P[m] ∈ CN×N . The matrix P[m] has a unit
norm and satisfies the constant amplitude constraint. Defining
1 as an all-one matrix of size N × N , we have |P| = 1/N .
As a result, ‖P‖F = 1. Denoting the additive white Gaussian
noise as v[m] ∼ Nc(0, σ2) , the received signal can be written
as

y[m] = 〈H,P[m]〉+ v[m]. (3)

The number of channel measurements required to estimate
the N ×N matrix H can be reduced by using techniques that
exploit available statistical pattern in H.

The channel matrix is approximately sparse in the 2D-DFT
dictionary at mmWave carrier frequencies [2] when a UPA is
assumed. We define the beamspace channel X ∈ CN×N as
the inverse 2D-DFT of H, i.e.,

X = U∗NHU∗N . (4)

The beamspace contains the effective channel coefficients seen
when different 2D-DFT-based beams are used at the BS [35].
Thanks to the limited scattering characteristics at mmWave
frequencies, the beamspace X is approximately sparse. The
support of the non-zero coefficients in X is related to the
AoD of the propagation rays in the channel. The sparsity of
X allows the use of CS-based algorithms for fast channel
estimation or beam alignment. For the tractability of analysis,
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we assume that X is one-sparse. It should be noted, however,
that the channels used in our simulation are not one-sparse.
These channels are derived from the ray tracing simulator
using (2). The one-sparse prior for X is perhaps simplistic,
but allows a tractable design of a CS matrix that is well-
suited to the prior on X. In particular, the prior is only updated
based on the strongest channel component, i.e., the direction
that is the strongest in the 2D-DFT beamspace. As a result,
our approach cannot learn all the components of the channel
and we leave the extension to the future work. The proposed
CS matrix design, however, achieves good performance over
standard constructions for practical channels. It is important to
note that the beamspace channels in our simulations include
leakage effects and are approximately sparse.

III. CS DESIGN WITH PERFECT AOD PRIOR

In this section, we assume the availability of a known AoD
prior and design an optimization technique that optimizes CS
matrix based on the AoD prior using a 2D-CCS framework
[34]. This optimized CS matrix can be used for more efficient
channel measurements to improve the beam alignment per-
formance. In Section IV, we will propose an online learning
framework that learns such AoD prior and optimizes CS matrix
accordingly.

A. 2D-convolutional CS: Motivation and Background

Channel measurements in 2D-CCS are the projections of
the channel matrix onto 2D circulantly shifted versions of a
base matrix P [34]. For M channel measurements with 2D-
CCS, the BS applies M distinct 2D-circulant shifts of P to
its phased array. The set of the circulant shifts used to acquire
the M measurements is denoted as Ω, given by

Ω = {(r[1], c[1]), (r[2], c[2]), · · · , (r[M ], c[M ])}. (5)

The coordinates {(r[m], c[m])}Mm=1 are chosen at random
without replacement from [N ] × [N ]. Subsampling randomly
is a standard approach for 2D-CCS [34]. Specific subsampling
design will be beneficial for different problems. It is an
interesting problem to optimize the subsampling coordinates as
well, since there exists some underlying angular information in
the dataset. The subsampling optimization problem, however,
is not analytically straightforward and is beyond the scope of
this paper. Therefore, we simply assume the coordinates are
randomly selected. In the m-th training slot, the phase shift
matrix P[m] in 2D-CCS is obtained by circulantly shifting
the base matrix P by r[m] rows and c[m] columns. The
receiver acquires the projection of H on P[m] according to
(3). The motivation to use 2D-CCS is two fold. First, the
CS matrix in 2D-CCS can be parametrized just by the base
matrix P and the set Ω. Such a parametrization results in
fewer optimization variables compared to that in generic CS
matrix optimization. Second, 2D-CCS can exploit the AoD
prior very well to design a proper base matrix suited to site-
specific layouts of the streets. As the magnitude of the 2D-
DFT of a matrix is invariant to its 2D-circulant shifts [36], the
2D-DFT magnitude of all the phase shift matrices in 2D-CCS
is exactly the same. The 2D-DFT magnitude of a phase shift

matrix represents its beam pattern sampled at discrete angular
locations. A reasonable channel measurement strategy under
a AoD prior is to use beam patterns that focus more power
along the directions that are more likely to have the strongest
components in the channels.

Now, we explain the mathematical idea underlying 2D-CCS.
We define PFC as the flipped and conjugated version of P,
i.e., PFC(k, `) = P(N−k,N−`) ∀k, `. To demonstrate how
2D-CCS works, we obtain the 2D circular convolution of the
channel and PFC as

G = H~PFC. (6)

The k, `-th entry G(k, `) is the projection of the channel onto
the phase shift matrix obtained by shifting P by k rows and
` columns. We use PΩ(·) : CN×N → C|Ω|×1 to represent
the projection operator that returns the entries of a matrix at
the locations in Ω as a vector. We define the noise vector
v ∈ C|Ω|×1. With this definition, the channel measurements
in 2D-CCS can be expressed as

y = PΩ(H~PFC) + v. (7)

Therefore, it can be observed that the channel measurements
in 2D-CCS are a subsampling of the convolution between H
and PFC.

We use the mask concept to indicate the 2D-DFT of the
phase shift matrix. From (8), we conclude that if we look
at the measurements in the 2D-DFT basis, it can simply be
represented as the Hadamard product between the beamspace
X and the 2D-DFT of the phase shift matrix P. Therefore,
the measurements can be obtained by applying a mask to the
original beamspace to be measured in the 2D-DFT domain.CS-
based channel estimation attempts to recover the beamspace
based on the measurements. We further transform the CS
problem corresponding to (7) into a partial 2D-DFT CS
problem [34]. The transformation will be used to simplify our
CS matrix optimization problem. Based on the DFT property,
the inverse 2D-DFT of G is given by [36]

U∗N (H~PFC)U∗N = U∗NHU∗N︸ ︷︷ ︸
X

�NU∗NPFCU
∗
N︸ ︷︷ ︸

Z

, (8)

which is represented as the Hadamard product of two terms,
X and Z. The left side of the Hadamard product in (8) is the
channel beamspace. The right side of the Hadamard product
is defined as the mask. As ‖P‖F = 1, it can be observed that
‖Z‖F = N . We name the Hadamard product of X and Z
as the masked beamspace [34]. It can be observed from (8)
that H~PFC = UN (X�Z)UN . We substitute the 2D-DFT
representation of (8) in (7), which gives

y = PΩ (UN (X� Z)UN ) + v. (9)

As the masked beamspace X�Z is sparse, it can be recovered
from its subsampled 2D-DFT in (9) with standard partial
2D-DFT techniques. To guarantee successful recovery of the
beamspace X, however, the mask Z should be non-zero at all
locations. To satisfy such non-zero constraints, a unimodular
mask was used in [34]. Denoting the estimated beamspace as
X̂, it was shown that the use of a unimodular mask minimizes
the channel reconstruction error ||X− X̂||F [34].
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Non-uniform masks can be more efficient to acquire com-
pressive channel measurements when the AoD prior is known
at the BS. As the AoD prior in vehicular settings follows
a certain statistical pattern according to the street layouts,
designing a mask Z that is tailored to the prior can result
in better beam alignment. In this paper, we define the AoD
prior as a probability distribution of the best beam index
within the 2D-DFT beamspace. A good mask is one with a
larger magnitude along the directions that are more likely to
be optimal. As the squared Frobenius norm of the mask is
constrained to be N2, the mask design problem is analogous
to a power allocation problem. In Section III-B, we investigate
the mask design problem for a given AoD prior.

B. Mask design with AoD prior

CS matrices in 2D-CCS are parameterized by P, or the
mask Z, and the subsampling set Ω. In this paper, we focus
on the optimization over the magnitude of the mask and leave
optimization of the subsampling set Ω to future work. To this
end, we assume Ω = [N ] × [N ]. Under such full sampling
assumption, (9) can be rewritten as

y = vec (UN (X� Z)UN ) + v. (10)

We define ỹ as an N2× 1 vector that is obtained by inverting
the 2D-DFT in (10), i.e., ỹ = (U∗N ⊗U∗N )y. We define the
transformed noise vector as ṽ = (U∗N ⊗U∗N )v to write

ỹ = vec(X� Z) + ṽ (11)
= vec(X)︸ ︷︷ ︸

x

� vec(Z)︸ ︷︷ ︸
z

+ṽ. (12)

Due to the unitary nature of the 2D-DFT, ṽ has the same
statistics as v, i.e., ṽ ∼ Nc(0, σ2I). We assume that the one-
sparse beamspace vector x is an instance of a random variable
x that is supported on a discrete event set F . Under the one-
sparse prior assumption, F contains the canonical basis vectors
e1, e2, · · · , eN2 ∈ CN2×1. The probability that x = ek, i.e.,
the kth beamspace component is 1, is pk. The AoD prior is
defined by the probabilities {pk}N

2

k=1 that sum to one. The
event that x = ek corresponds to the case in which the k-th
beam direction is optimal in the 2D-DFT beamspace.

Now, we derive the probability of successful beam align-
ment for a mask z. For such a computation, we first derive
the success probability conditioned on x = ek. When the
kth beamspace direction is optimal, the entries of ỹ can be
expressed as

ỹk = 1 · zk + ṽk = zk + ṽk, (13)
ỹj = 0 · zj + ṽj = ṽj , ∀j 6= k. (14)

For x = ek, beam alignment is successful when |ỹk| >
|ỹj |, ∀j 6= k, i.e.,

|zk + ṽk| > |ṽj |, ∀j 6= k. (15)

Such an event occurs with a probability∏
j 6=k P (|ṽj | < |zk + ṽk|). Considering the N2 candidates

for x, the probability of successful beam alignment is

P(successful alignment) (16)

(a)
=

N2∑
k=1

pk
∏
j 6=k

P (|ṽj | < |zk + ṽk|) (17)

(b)
=

N2∑
k=1

pk (P (|ṽ| < |zk + ṽk|))N
2−1 (18)

=
N2∑
k=1

pk

(
P
(∣∣∣∣ ṽ

zk

∣∣∣∣ < ∣∣∣∣1 +
ṽk
zk

∣∣∣∣))N2−1

, (19)

where (a) is derived based on the assumption that the events
in F are independent, and (b) follows from the IID noise
assumption.

We express the probability of successful beam alignment
as a function of the AoD prior, the mask, and the noise
variance σ2. Conditioned on x = ek, the random variable
ṽ
zk
∼ N

(
0, σ

2

|zk|

)
.We use Lemma 1 to simplify (19).

Lemma 1. For x and y as IID complex Gaussian with x, y ∼
N
(
0, ξ2

)
, we have

P
(
|1 + x|2 ≥ |y|2

)
= 1− 1

2
exp

(
− 1

2ξ2

)
. (20)

Proof. For convenience of notation, we first rewrite
P
(
|1 + x|2 ≥ |y|2

)
as

P
(
|1 + x|2 ≥ |y|2

)
= P

(∣∣∣∣√2(1 + x)

ξ

∣∣∣∣2 ≥ ∣∣∣∣√2y

ξ

∣∣∣∣2
)

(21)

Since both x and y are complex Gaussian, the distribution
of x2

c =
∣∣√2y
ξ

∣∣2 is a chi-square distribution with degree of 2.

The random variable x2
nc =

∣∣∣∣√2(1+x)
ξ

∣∣∣∣2 follows a non-centered

chi-square distribution of degree 2 with λ = 2ξ2 [37]. The
probability in (20) can be derived as

P
(
|1 + x|2 ≥ |y|2

)
= P

(
x2

c ≤ x2
nc

)
= 1− P

(
x2

c ≥ x2
nc

)
= Ex2nc

[
1− exp

(
−1

2
x2

nc

)]
(a)
= 1− 1

2
exp

(
− 1

2ξ2

)
, (22)

where (a) is derived based on the moment-generating function
of non-centered chi-square distribution with degree 2 and λ =
2ξ2 [37].

We use Lemma 1, to rewrite (19) as

P(successful alignment) (23)

=
N2∑
k=1

pk

(
1− 1

2
exp

(
−|zk|

2

2σ2

))N2−1

. (24)

The goal of this section is to determine the mask z that
maximizes the probability in (23).

We now derive a convex optimization problem that max-
imizes an approximation of the beam alignment probability.
As ‖P‖F = 1, the mask must satisfy the norm constraint
‖z‖2 = N . The mask optimization problem is then

max

N2∑
k=1

pk

(
1− 1

2
exp

(
−|zk|

2

2σ2

))N2−1

(25)

s.t.
N2∑
k=1

|zk|2 = N2.
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Unfortunately, the optimization problem in (25) is non-convex.
Based on Jensen’s inequality, the log-equivalent form of the
objective in (25) can be lower-bounded by

log

N2∑
k=1

pk

(
1− 1

2
exp

(
−|zk|

2

2σ2

))N2−1
 (26)

≥
N2∑
k=1

pk log

((
1− 1

2
exp

(
−|zk|

2

2σ2

))N2−1
)

(27)

= (N2 − 1)

N2−1∑
i=1

pk log

(
1− 1

2
exp

(
−|zk|

2

2σ2

))
. (28)

Fortunately, the lower bound in (28) is convex in
(|z1|2, |z2|2, · · · , |zN2 |2)T , i.e., |z|2. The constraint in (25) is
also convex in the squared magnitude vector |z|2. The optimal
mask |Z|opt that maximizes the lower bound on the probability
of successful beam alignment can be obtained by the following
optimization problem

max

N2−1∑
k=1

pk log

(
1− 1

2
exp

(
−|zk|

2

2σ2

))
(29)

s.t.
N2∑
k=1

|zk|2 = 1.

The problem in (29) can be solved using standard convex
optimization by considering {|zk|2}N

2

k=1 as the variables. We
can observe that (29) shares similar structure to the classical
waterfilling problem, by approximating the exponential func-
tion in (29) to its linear approximation. In this paper, we do not
make such an approximation. Instead, we use the formulation
in (29) to find the mask magnitude that is optimized for an
AoD prior. Another way to interpret the optimization problem
is optimizing the power allocated to measuring different beam
directions. If no AoD prior is available to the BS, the intuitive
way to design the mask is to make it uniform in all beam
directions. In site-specific scenarios with AoD prior available,
a smarter way is to design a mask with different magnitudes
along different beam directions corresponding to its AoD
distribution. Also, we can treat the mask as the beam pattern to
measure the channel due to the Hadamard product property.
The BS should design a nonuniform beam pattern to probe
the beamspace based on the AoD prior. Hence, we explain
it by allocating power to measure the beamspace. We use
the CVXPY package in Python [38] to solve the convex
optimization problem in (29).

C. Phase recovery from the optimized mask magnitude

From (8), it can be observed that the phase shift matrix
P is the inverse 2D-DFT of the mask Z. The optimization
problem in (29), however, only provides the magnitude of
the mask. It is important to note that the phase of the mask
cannot be arbitrary. This is because the base phase shift
matrix P, i.e., the 2D-DFT of Z, must satisfy the unit-norm
constraint of |P| = 1/N . The problem of finding a phase of a
matrix such that its inverse 2D-DFT has a known magnitude
has been investigated in optics [39]. The Gerchberg-Saxton

Cached prior 
distribution

Update 
sensing codebook

Measurement 
feedback

Fig. 2. An illustration of the online sensing matrix learning. The BS keeps
updating and caching an AoD distribution corresponding to the vehicles in its
coverage area. Given the available AoD prior, the BS designs its CS matrix for
2D-CCS based on the procedure in Section III and compressively measures
the channel. Based on the channel measurement feedback, the BS estimates
the direction with the strongest component in the 2D-DFT beamspace and
updates the AoD prior accordingly. The BS keeps measuring the channels
with a CS matrix optimized based on the available AoD prior and updating
such AoD prior iteratively until the estimated AoD distribution converges.

algorithm in [39] iteratively retrieves the phase of a pair of
signals related by Fourier transform, with the availability of the
amplitudes of the two signals. In our problem, the base matrix
P and the mask Z form a Fourier transform pair, with known
amplitudes, i.e., 1/N and the optimized mask |Z|opt. The BS
computes the phase of the mask Zopt and the corresponding
base matrix Popt by the Gerchberg-Saxton algorithm [39]. The
BS applies M � N2 random circulant shifts of the resultant
base matrix Popt for the receiver to acquire 2D-CCS-based
channel measurements.

IV. ONLINE SENSING MATRIX LEARNING

In Section III, we explained how to design the sensing
matrix in 2D-CCS with perfect AoD prior. Such prior can be
obtained from a large number of channel realizations measured
over a long time, which is similar to the procedure of offline
learning. The establishment of such offline dataset, however,
may not be easy. First, to identify the optimal beam index, a
significant amount of overhead will be introduced due to the
deployment of large antenna arrays and complicated channel
statistics. Second, it is not clear how many data samples would
be sufficient to estimate AoD distribution that is accurate
enough for the design of the sensing matrix. Despite the
changes in the traffic flow such as the traffic density and
speed, we can tune the frequencies of CS matrix adaptations
in different scenarios. In this paper, we show how online
learning can be used to establish the angular domain database
by learning the AoD distribution on the fly.

Online learning starts with the absence of any useful prior,
i.e., the AoD distribution is uniform. The BS constructs
the sensing matrix corresponding to the uniform AoD prior
according to the procedure in Section III. The receiver feed-
backs the CS-based channel measurements to the BS. The BS
then recovers the channel beamspace based on the channel
feedback and updates the AoD distribution with the estimated
optimal beam direction. Fig. 2 provides an illustration of the
proposed online codebook learning solution. After the BS has
successfully learned the underlying AoD prior, it applies the
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optimized phase shift matrix for channel estimation and beam
alignment using a small number of channel measurements. If
a successful transmission link cannot be established using the
proposed algorithm, the BS can simply reinitiate the beam
training process based on the receiver feedback. The BS can
also start the retransmission if the packet is not successfully
received. We use a classical online learning solution in MAB,
the UCB algorithm, to update the AoD prior.

In this paper, we use a stationary multi-armed bandits to
formulate the online beam codebook learning framework. The
BS learns the AoD prior and compressive beam codebooks
through accumulated knowledge of channel prior information
in a site-specific vehicular contexts, assuming a stationary AoD
distribution. Although vehicular channels are highly dynamic,
our solution focuses more on the relationship between the
street topology (e.g. street layout) and channel angular prior,
as shown in Fig. 4. Therefore, such stationary component
of the angular prior has little dependence on the dynamics
such as traffic condition, weather, etc. Instead, as long as the
street topology and nearby buildings remain stationary, the
channel prior will experience negligible changes. Furthermore,
information such as traffic density is more related to the design
of the problems such as scheduling or beam management. Ac-
quisition of vehicular locations and other detailed information
from sensor can significantly increase the network payload and
also cannot guarantee sufficient sensor accuracy. This is also
inconsistent with the motivation of the proposed AoD prior-
aided beam alignment solution, where we would like to relax
system requirements, as discussed in Section II. Therefore,
we do not consider a typical reinforcement learning problem
which deals with dynamic and adaptive vehicular contexts. We
consider a stationary UCB model from multi-armed bandits.

A. Multi-armed bandits

A MAB is an online learning approach that learns the policy
of actions and makes decisions from the rewards observed
so far. The MAB problem can be explained as follows.
There is a player with K independent machines, each with
a reward distribution that is initially unknown to the player.
The reward distributions of the K machines are assumed to
remain constant at different time steps of the learning. The
player plays an action at (tries one machine) from the given set
A = [K] and observes the associated reward R(t). The action
of the player at time t is only dependent on the past history
of observed rewards H(t− 1) = R(1), R(2), · · · , R(t− 1). A
policy π is defined as the mapping from the history H(t− 1)
to the action a(t). When the MAB algorithm becomes fully
confident about its learned policy, it selects the machine that
has the largest expected reward afterwards.

Online learning algorithms require a careful design of the
exploration and exploitation. There exists a tradeoff between:
1) exploring the environment to find profitable actions, and
2) taking the empirically best action as often as possible. The
tradeoff arises because only a limited number of machines are
played at each time slot. The algorithm may repeat playing the
optimal machine it observes so far from the rewards. Hence,
the algorithm has to explore the environment to improve

its knowledge about the reward generating process. In UCB
algorithms, such exploration-exploitation status is quantified
by upper confidence index associated with each machine [27].
In [40], a family of policies was introduced where the index
can be expressed as simple function of the sequence of the
actions and rewards of each machine.

In UCB1 algorithm [40], for example, the upper confidence
index is the sum of two terms: 1) the empirical mean of the
rewards obtained from the sequence of observations, and 2)
the width of the confidence bounds that reflects the uncertainty
of the player’s knowledge. In the basic setting, we assume a
K-armed bandit problem [27]. We denote the time that arm
k has been selected till time t − 1 as Tk(t − 1). The time
slots in which arm k is played are τk1 , τ

k
2 , · · · , τkTk(t−1). The

empirical mean of the reward of k-th arm at time t is µ̂k(t−
1) = 1

Tk(t−1)

∑Tk(t−1)
j=1 R(τkj ). For UCB1 algorithm, the upper

confidence index UCBk of the k-th machine at time t is defined
as

UCBk(t, δ) =
∞, if Tk(t− 1) = 0

µ̂k(t− 1)︸ ︷︷ ︸
Empirical mean

+

√
2 log(1/δ)

Tk(t− 1)︸ ︷︷ ︸
Exploration term

, if Tk(t− 1) > 0 . (30)

In each time step, the player plays the arm with the largest
UCB value. The first term quantifies the knowledge the player
accumulates so far as the empirical mean. The second term
evaluates exploration as the square root of the inverse of the
time the arm has been played. The algorithm suppresses the
exploration for arms that have been tested many times, while
encourages those arms that have been tried for only few times.
The parameter δ can be used to control the extent of the
exploration [41]. When time t → ∞, Tk(t) → ∞, ∀k and
the exploration term in (30) becomes zero. The UCB value
becomes the empirical mean and converges to the expected
rewards of the machines. The player simply chooses the arm
with the largest expected reward at the end of the learning.

B. Online sensing matrix learning with UCB

The UCB algorithm fits the online beam alignment problem
using a beam scanning-based approach, but its application to
the online sensing matrix learning problem is not straight-
forward. For CS problems, the use of multi-armed bandits
is not straightforward. In CS-based beam training approach,
the beam used for measuring the channel is not directional.
Instead, it tends to be wide and covers all beam directions
or cover several beam directions with different weights based
on the magnitude of the beam pattern along different beam
directions. Therefore, it is no longer consistent with the con-
cept of pulling one arm in multi-armed bandits. Furthermore,
for classical multi-armed bandits problem or beam-scanning
problem, pulling one arm or trying one beam generally returns
the correct observation. For example, the player can check if
pulling this arm brings rewards, or the BS can obtain the exact
channel statistics along this beam direction. For CS-based
solution, however, since the beam is wide, the measurements
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will be a linear combination of the beam statistics along mul-
tiple beam directions. Leveraging sparsity can help to recover
the beam RSRP along certain beam directions, without any
guarantee of the channel estimation accuracy. This indicates
that the observation of the channel statistics for pulling in
CS-based solution is not accurate. Therefore, it is hard to
characterize the notation of rewards in UCB.

Consider an example where the BS wants to test the
k-th beam direction. Instead of obtaining feedback of the
beamspace xk directly through beam search, the BS recovers
an estimate of the whole beamspace x̂ with CS. The mismatch
between the estimated beamspace and the true beamspace,
i.e., x̂ − x, could pose great challenges to the exploration-
exploitation design in online learning. The ultimate goal of the
paper is to learn the sensing matrix that is best suited for a
certain vehicular context. Since both the prior and the sensing
matrix are stored and applied at the BS, the online codebook
learning model introduces negligible signaling overhead and
fully leverages the computation resources at the BS cloud.

C. Exploration-exploitation in online sensing matrix learning

The online sensing matrix learning problem requires an
elaborate design of the exploration-exploitation strategy. With-
out the availability of any useful prior, the online learning
framework starts with a uniform mask. If the exploration
term in (30) is not carefully designed, the BS may apply
a uniform mask that does not fully leverage the empirical
AoD distribution it learns so far. The use of a uniform mask
can lead to poor channel estimation performance and slow
convergence of the AoD prior to its real distribution. If the BS
uses an AoD distribution that is estimated without sufficient
exploration, it can end up using masks that may not have good
magnitudes along unexplored directions that are likely to be
optimal. The estimated AoD distribution could be more and
more biased towards the beam directions that are estimated as
optimal in the beginning of the learning. We propose three
approaches to achieve the exploration-exploitation tradeoff.
The first approach targets a smooth update of the AoD prior
estimation and a mild exploration over different beams by
adding an exploration term to the estimated AoD prior. The
second approach, instead of imposing an exploration term
to AoD estimation, requires the BS to directly apply such
exploration term over the mask. Finally, we demonstrate that
by changing the number of CS measurements over time,
the proposed approach can achieve a more accurate AoD
distribution estimation, especially in the beginning of online
sensing matrix learning.

1) UCB with exploration: A good design of an exploration-
exploitation tradeoff should guarantee a smooth evolvement
of UCB values through the learning process. The learning
starts with a uniform prior, but gradually learns more about
the channel and converges to a less uniform AoD distribution
that can be used for calculating a better mask. The 2D-CCS
solution, however, cannot handle a peaky yet wrong prior.
The exploitation term in UCB of (30), which is the empirical
mean of the AoD distribution, is susceptible to AoD prior
estimation inaccuracy due to an insufficient number of channel

realizations in the beginning. The time step t in the online
learning is equivalent to the index of the sequential BS-vehicle
channel realizations. Since the BS calculates the optimal beam
direction based on CS measurements, the reward at time t is a
one-hot encoded vector rt. With the estimated optimal beam
direction at time t denoted as `(t), we have rt[`(t)] = 1 and
rt[k] = 0, ∀k 6= `(t), k ∈ [N2]. Under successful CS-based
recovery, the BS compressively measuring the channel using
2D-CCS is treated as equivalent to the case where the BS mea-
sures all beam directions exhaustively and returns the optimal
beam direction. Therefore, the BS forms a superarm that plays
all machines each time, i.e., Tk(t+1) = Tk(t)+1, ∀i. With the
existence of an identical exploration term for different beam
directions in (30) that decreases over time, the mask is less
sensitive to the change of AoD distribution estimation. Hence,
the BS can avoid a peaky mask that arises from the inaccurate
AoD estimation in the beginning. The slow decrease of the
UCB uniformity guarantees the smoothness of the AoD prior
at certain locations during initial exploration. The proposed
algorithm is explained in Algorithm 1.

Algorithm 1 UCB for online sensing matrix learning.
Input: Number of measurements per time slot M , a constant

δ, number of plays T .
Output: Estimated AoD prior p̂ = [p̂1, p̂2, · · · , p̂N2 ].

Initialization: Initialize a uniform AoD prior
p = [p1, p2, · · · , pN2 ], where pi = 1

N2 , i = 1, 2, · · · , N2.
A sufficiently large value is set as N∞ = 10000.
Initialize Ti(1) = 0, µ̂i(t) = 0, ∀i.

1: for t : mod (t, Tupdate) == 0 do
2: Compute UCB values UCBi(t) ←{

N∞, if Ti(t− 1) = 0

µ̂i(t− 1) +
√

2 log(1/δ)
Ti(t−1) , if Ti(t− 1) > 0.

3: Update prior pi = UCBi(t)∑N2

j=1 UCBj(t)
, ∀i, and calculate the

sensing matrix based on Section III-A - III-C.
4: Perform 2D-CCS and return the estimated optimal beam

direction index s.
5: Update reward and its empirical mean

rt[i] = 0, µ̂i(t+ 1) = µ̂i(t) ∀i 6= s,
rt[s] = 1, µ̂s(t+ 1) = µ̂s(t)Ts(t)+1

Ts(t)+1 .
6: Update time of being played Ti(t+ 1) = Ti(t) + 1, ∀i.
7: end for
8: p̂ = p
9: return AoD distribution estimate p̂.

2) Mask regularization: The second approach applies ex-
ploration directly on the mask Z. In the first approach, we
add an exploration term to the estimated AoD distribution
in (30) to minimize the error in the AoD prior estimate that
can result in a biased mask. In 2D-CCS, the magnitude of
the mask represents the power allocated for sensing along
different beam directions that are defined by the 2D-DFT
dictionary. We propose to directly apply regularization over
the mask. The BS calculates a mask directly based on the
empirical AoD distribution, added by an extra exploration
term in (30) as in Algorithm 1. The algorithm is provided
in Algorithm 2. It can be observed that Algorithm 1 and
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2 share very similar inputs, outputs, and procedures. The
difference is where the exploration (regularization) term is
imposed on. The regularization is inexplicitly applied for the
AoD estimation of UCB in Section IV-C1, while it is directly
incorporated in the mask for probability estimation. It should
be noted from Algorithm 1 and Algorithm 2 that the BS
does not update the optimized phase shift matrix for each
time slot, since it could be expensive to solve the convex
optimization in (29). We assume that the phase shift matrix is
updated every Tupdate = 20 channels. Such phase shift matrix
optimization interval can achieve a good tradeoff between the
system complexity and the algorithm efficiency.

3) Reducing the number of CS measurements with online
learning: For the exploration-exploitation approaches pro-
posed in Section IV-C2 and IV-C1, we assume a fixed number
of CS measurements applied for each channel realization. Fur-
ther varying the number of CS measurements is another way
to improve AoD estimation accuracy and achieve a tradeoff
between exploitation and exploration, without sacrificing too
much in terms of overhead. When a larger number of channel
measurements are acquired by the receivers, CS can reveal
more accurate information in the beamspace. In the beginning
of the online AoD distribution estimation, the BS must use
a larger number of CS-based measurements to guarantee
successful beamspace recovery. Successful CS-based beam
alignment ensures that the BS obtains a more accurate AoD
prior. With a better mask, fewer measurements are sufficient
to recover the correct the optimal beam direction. Hence, we
propose to apply Algorithm 1 and 2 while adapting the number
of CS measurements in different phases of online learning. We
consider the number of measurements as a function of time
step t as M(t).

The BS uses a higher number of CS measurements at the
start of the learning, and decreases M(t) linearly with time.
Specifically, ∆t defines the time interval after which the CS
measurements M(t) is decreased by ∆M . It should be noted
that the number of CS measurements cannot be too small so
as to guarantee the accuracy of beam alignment. The initial
number of CS measurements is represented as M0, and the
lower bound on the number of CS measurements is Mmin.
Hence, M(t) changes over time and can be given by

M(t) = max

{
M0 −

⌊ t

∆t

⌋
∆M ,Mmin

}
. (31)

Linear decrease of M(t) is a simple way of adjusting
measurements temporally. For this approach, multiple hyper-
parameters, such as ∆t, ∆M , M0, need to be tested and
evaluated. In scenarios where there are large changes in the
environment dynamics, Mmin measurements might not be
enough to achieve reasonable system performance. In this case,
a smaller Mmin that suits the changes in the environment must
be used. Furthermore, the received SNR or rate can also be
used as the reward instead of a unit reward in Algorithm
1. With these changes, the proposed algorithm starts with a
uniform prior when it observes a poor reward in dynamic
settings. Investigating a reasonable choice for Mmin for a
vehicular scenario with a dynamic prior is an interesting
direction for future work.

Algorithm 2 Probability estimation with mask regularization
Input: Number of measurements per time slot M , a constant

δ, number of plays T .
Output: Estimated AoD prior p̂ = [p̂1, p̂2, · · · , p̂N2 ].

Initialization: Initialize a uniform AoD prior p =
[p1, p2, · · · , pN2 ], where pi = 1

N2 , i = 1, 2, · · · , N2.
A sufficiently large value N∞ = 10000.
Initialize Ti(1) = 0, µ̂i(t) = 0, ∀i.

1: for t : mod (t, Tupdate) == 0) do
2: Update the estimated AoD distribution

pi ← µ̂i(t)∑N2

j=1 µ̂j(t)
.

3: Calculate the mask z based on p1, p2, · · · , pN2 based
on Section III-A - III-C.

4: Regularize the mask amplitude with

|zi| ←

{
|zi|+N∞, if Ti(t− 1) = 0

|zi|+
√

2 log(1/δ)
Ti(t−1) , if Ti(t− 1) > 0.

5: Normalize the mask amplitude |z|. Apply Gerchberg-
Saxton Algorithm as in Section III-C to obtain the phase
of the mask.

6: Perform 2D-CCS with z and return the estimated opti-
mal beam direction index s.

7: Update reward and its empirical mean
xi(t) = 0, µ̂i(t+ 1) = µ̂i(t) ∀i 6= s, xs(t) = 1,
µ̂s(t+ 1) = µ̂s(t)Ts(t)+1

Ts+1 .
8: Update the AoD distribution as the empirical mean

pi = µ̂i(t), ∀i.
9: Update time of being played for arm i,

Ti(t+ 1) = Ti(t) + 1, ∀i.
10: end for
11: p̂ = p
12: return AoD distribution estimate p̂.

V. NUMERICAL RESULTS

In this section, we evaluate the proposed online 2D-CCS
matrix learning framework with comprehensive numerical
results. First, we examine the baseline model with perfect
AoD prior, i.e., offline learning. Second, we compare perfor-
mance of the online sensing matrix learning using different
exploration-exploitation techniques proposed in Section IV-C.
Last, we demonstrate the convergence of the estimated AoD
prior with the proposed online sensing matrix learning algo-
rithms.

A. Offline learning with perfect AoD prior

In Fig. 3, we evaluate the beam alignment performance of
2D-CCS using perfect AoD prior. The performance metric is
the average beam reference signal received power (RSRP).
We consider a 32 × 32 UPA at the BS. In the simulation,
the transmit power at the BS is adjusted so that the average
received SNR for a quasi-omnidirectional transmission is 10
dB. Such an SNR was achieved by using a Golay code to
acquire channel measurements [34]. We compare the perfor-
mance among the proposed 2D-CCS solution, exhaustive beam
search with 2D-DFT beam codebook, and the baseline model
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of optimal beamforming with perfect channel state information
(CSI).

The development in this paper assumed a narrowband chan-
nel model, but the most interesting applications of mmWave
use large bandwidths, and consequently have wideband chan-
nels. As a result, we propose a frame structure that allows
applying the proposed 2D-CCS-based solution in the wideband
case. First, we assume that a complementary Golay pair
is used in the time domain for training, which is used in
IEEE 802.11ay for example. Exploiting the complementary
property, the receiver can separate out the different wideband
channel taps. There are different ways to apply our algorithm
with multiple channel taps {H̃`}`=0,1,··· ,L−1. Because the
channel taps have contributions primarily from a few angular
directions, we simply add up the different matrix components.
A more sophisticated approach could operate on each tap
separately or jointly, but we defer this to future work. Also,
it should be noted that we evaluate the channel based on the
realistic ray tracing outputs, without the one-sparse assumption
adopted in Lemma 1.

Let ỹ[`] denote the measurement vector corresponding to
H̃[`]. Our CS-based online learning framework is applied
over the measurement vector y =

∑L−1
`=0 ỹ[`]. As the analog

beamtraining vectors are frequency flat, CS over y is expected
to provide an estimate of H =

∑L−1
`=0 H̃[`]. Let PBF represent

the beamforming matrix applied to the phased array at the BS.
The beamforming gain achieved with PBF is defined as

BFgain = |〈H,PBF〉|2. (32)

For the perfect CSI case with optimal beamforming, the
beamforming matrix at the phased array is PBF, ideal =
e jphase(H)/N . We use Ĥ to denote the channel estimate
obtained with our online learning-based 2D-CCS algorithm.
The orthogonal matching pursuit (OMP) algorithm [42] was
used to solve the sparse recovery problem in our method.
The beamforming matrix with the proposed approach is
PBF, 2D-CCS = e jphase(Ĥ)/N . For exhaustive beam search,
the BS searches through the N2 beams from a 2D-DFT beam
codebook and identifies the optimal beam direction with the
largest beam RSRP. For the beam sweeping among the partial
beamspace, with the availability of AoD distribution ordered
as p = [pr1 , pr2 , · · · , prN2 : pr1 > pr2 > · · · > prN2 ], the BS
measures the RSRP of the top M beams and selects the one
with the largest RSRP correspondingly.

Fig. 3 shows huge performance improvement with nonuni-
form mask designed by AoD prior, compared to that with
uniform mask in the 2D-CCS framework. With 20 measure-
ments, 2D-CCS with nonuniform mask shows more than 6
dB improvement of average beam RSRP than using beam
search with the same number of measurements, and 10 dB
gain compared to 2D-CCS with a uniform mask. With only 35
measurements, 2D-CCS with AoD prior achieves comparable
performance with exhaustive search that uses N2 = 1024
beams. The average beam power using 2D-CCS-based beam
alignment with AoD prior is superior to exhaustive beam
search when M > 40, and almost achieves the same per-
formance as perfect CSI case. It should be noted that the
beam alignment with 2D-CCS outperforms exhaustive beam
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Fig. 3. A comparison of the average beam RSRP using different beam
alignment approaches assuming perfect AoD prior. The proposed 2D-CCS
with AoD prior outperforms that using uniform mask by a large margin.
The average beam RSRP of 2D-CCS using AoD prior is close to that of
optimal beamforming. Furthermore, 2D-CCS with AoD prior exhibits larger
beamforming gain compared to exhaustive beam search, when the number of
measurements grows large.

search because the BS applies conjugate beamforming using
the estimated beamspace.
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Fig. 4. AoD distribution in beamspace across all channel realizations.
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Fig. 5. Mask calculated using the optimization procedure in Section
III for the AoD prior in Fig. 4

The real AoD distribution and the corresponding mask are
plotted in Fig. 4 and Fig. 5. Two continuous strips can be
observed in Fig. 4 and Fig. 5. These strips represent the two
straight lanes in the simulated urban canyon. The observation
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implies that structured AoD distribution can be extracted from
site-specific street layouts and leveraged for CS matrix design.
Furthermore, as shown in Fig. 5, the mask obtained by the
optimization in (29) satisfies two desired properties: i) The
BS is able to allocate more power to compressively sense the
dominant beam directions; ii) The mask is also able to cover
less important beam directions, e.g., the beamspace on the two
sides of the strips along the azimuth direction in Fig. 4.

B. Online sensing matrix learning

In this section, we evaluate and compare the effect of “ex-
ploration” on the online learning performance. We consider
the case without any exploration, i.e., directly using the mask
calculated by the estimated AoD distribution for sensing, and
the three approaches provided in Section IV-C.

1) No exploration: Fig. 6 compares the mask learned with-
out any exploration, using a fixed number of measurements.
Without exploration, the procedure is identical to Algorithm 1
where δ = ∞ and the exploration term is zero. In this case,
the sensing matrix is calculated directly based on the empirical
AoD distribution without any regularization. As discussed in
Section IV-C, no exploration leads to error propagation and
highly biased estimation, which are reflected in the results in
Fig. 6. Compared to the mask calculated from perfect AoD
prior, the mask without exploration displays some inconsis-
tency in the AoD distribution estimation, and fails to identify
several important beam directions. The combined effect of
measurement inaccuracy and error propagation due to biased
AoD estimation gives rise to a mask that results in poor
performance with CS.
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Fig. 6. A comparison of the final mask learned without any exploration,
using different numbers of beam measurements M = 100, 60, 40, 25.
Without exploration, the mask fails to capture the full channel statistics in
the angular domain, especially when the number of CS measurements per
channel realization is relatively small, e.g., M = 25 or M = 40.

2) Exploration and regularization: Fig. 7 and Fig. 8 illus-
trate the average beamforming loss with UCB in Section IV-C1
and mask regularization in Section IV-C2, compared to the
ideal mask calculated from perfect AoD prior in Fig. 5 using
different number of measurements. Specifically, we evaluate
the performance of our approach for different values of δ. Fig.
8 shows that the gap between the beamforming gain of the
mask with perfect AoD prior and the one learned online using
a fixed number of measurements is marginal, if the regulariza-
tion parameter δ is selected carefully. We observe that a low
beamforming loss is achieved when

√
2 log(1/δ) is around

0.1. When
√

2 log(1/δ) is too large, e.g.
√

2 log(1/δ) = 1, the
mask changes too slowly to capture the information provided
by AoD estimation. When

√
2 log(1/δ) becomes too small,

the learning could be too aggressive in the AoD distribution
estimation, since it results in a poor mask for 2D-CCS. Similar
results of UCB exploration can be observed in Fig. 7.

Table I provides a more explicit comparison among the
beamforming loss of the mask with perfect AoD prior, uniform
mask, the mask achieved with UCB exploration, and the mask
with mask regularization, with respect to optimal beamforming
using perfect CSI. The beamforming loss decreases with a
larger number of CS measurements per channel realization.
For M = 40, 50, 60, 80, 100, the optimal beamforming loss
with respect to mask with perfect AoD prior is approximately
1 dB. When M = 25, the regularized mask has superior
performance to that of the uniform mask. Also, using only
25 measurements throughout the whole learning process, the
BS is still able to learn the AoD distribution and results in
2.19 dB beamforming loss compared to the mask calculated
using perfect AoD prior. Similar observations can be obtained
for different number of CS measurements.

We measure the AoD estimation accuracy based on sta-
tistical distance between the estimated AoD distribution and
the real AoD distribution of the data samples [43]. We use
a statistical distance measure - Hellinger distance [44]. For
two discrete distributions P = (p1, p2, · · · , pK) and Q =
(q1, q2, · · · , qK), the Hellinger distance H(P‖Q) is defined
as

H(P‖Q) =
1√
2

√√√√ K∑
i=1

(
√
pi −

√
qi)2. (33)

The Hellinger distance is directly related to the Euclidean
norm of the difference of the square root of the probability
distribution probability mass functions (PMF).

Fig. 9 characterizes the temporal evolution of the AoD
estimation with mask regularization using a fixed number of
measurements. We compare the Hellinger distance between
the empirical AoD distribution and the real AoD distribution,
with mask regularization, and that with perfect CSI available
at the BS. The real AoD prior is calculated across all 3000
channel realizations. The empirical AoD prior is calculated
at different time steps, e.g., the AoD prior of the first 200,
300 samples, etc. For the perfect CSI case, we assume the BS
can always recover the optimal beam direction. The perfect
CSI curve provides a baseline reference to evaluate the AoD
estimation accuracy during online learning. In Fig. 9, the
Hellinger distance decreases sharply in the beginning. When
time T < 500, the Hellinger distance with M = 100, 50
closely matches that with perfect CSI. After time T > 1000,
the Hellinger distance starts to change slowly. It is also shown
that the Hellinger distances of M = 100 and M = 50 are
similar. When M = 20, online learning cannot accurately
estimate the exact optimal beam direction, which leads to a
large Hellinger distance compared to the perfect CSI case.
From the simulation results in Fig. 3 and Table I, we can
see that the learned mask can well capture the underlying
statistics in the AoD prior, and well resembles the perfect mask
optimized based on the real AoD prior, despite the existence
of the nonzero Hellinger distance. Therefore, the existence of
such existent gap in the Hellinger distance will not impose
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B) UCB exploration
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Fig. 7. Comparison of the average beamforming loss using UCB ex-
ploration in Section IV-C1 with respect to the performance achieved
by applying mask in 2D-CCS with perfect AoD prior.
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Fig. 8. Comparison of the average beamforming loss using mask
regularization in Section IV-C2 with respect to the performance
achieved by applying mask in 2D-CCS with perfect AoD prior.

large impacts on the system performance. Also, the Hellinger
distance converges very fast to a certain value. The reason for
this fast convergence is that channels collected in our dataset
is based on ray tracing simulation in an urban canyon with
two straight lanes. The conclusion implies that the proposed
AoD prior-based sensing matrix design is robust to small AoD
distribution estimation error, which is favorable to real field
implementation that generally has more complicated street
layouts and channel characteristics.

3) Updating the number of CS measurements: The online
sensing matrix learning is built on the assumption that the
CS measurements can roughly give accurate channel esti-
mation, especially in the beginning of the learning. Starting
with a large number of measurements when the BS has
no prior is a good way to avoid error propagation in the
AoD distribution estimation. After measuring more channel
realizations, the BS becomes confident about the AoD dis-
tribution estimate. In such a case, decreasing the number of
CS measurements can result in a reduced training overhead.
With mask regularization, the BS further decreases the number
of CS measurements in our online learning-based framework.
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Fig. 9. Evaluation of the Hellinger distance defined in (33) between the real
AoD distribution of in total of 3000 channel realizations, and the empirical
AoD distribution learned at different time steps during online sensing matrix
learning using mask regularization in Section IV-C2. The regularization
parameter is set as δ = 10, which is able to achieve a good exploration-
exploitation tradeoff as shown in Fig. 7 and Fig. 8.

We present the average beamforming loss with a decreasing
number of measurements in the 4 - 7 rows in Table I. We
use M = Mmin, i.e., the stabilized number of measurements
the BS uses for each channel realization. In our evaluation,
we fix ∆M = 20. We update ∆t in (31) to modify how
fast M decreases. The learning is shown to outperform mask
regularization with M = Mmin. For Mmin = 25, an extra
1 dB gain compared to regularized mask can be achieved.
No significant differences, however, are observed among the
different initial measurement numbers M0 = 200, 300 and the
update interval ∆t = 100, 200. The worst-case scenario with
the smallest initial measurement M0 = 200 and the fastest
measurement decrease ∆t = 100 among the four settings in
4 - 7 rows of Table I achieves similar performance compared
to the cases with a larger number of measurements M0 > 200
or ∆t > 100.

C. Mask convergence

Finally, Fig. 10 compares the mask convergence of 1) UCB
exploration in Section IV-C1, 2) decreasing the number of CS
measurements combined with mask regularization in Section
IV-C3, and 3) mask regularization only in Section IV-C, after
4000 time steps. We can observe that all of the three masks
can capture the basic structure and the dominant directions
of the AoD distribution in the beamspace. For UCB explo-
ration in Fig 10.a, the mask fails to capture some less likely
beam directions. The mask power allocation is more centered
around several dominant directions, which makes it difficult
to recover a beam direction that has not appeared too often
as optimal. The mask convergence for linear measurement
number decrease with M0 = 300, ∆M = 100 is illustrated
in Fig 10.b. As shown in Fig 10.b, the linear measurement
decrease procedure achieves better exploration compared to
UCB exploration in Fig 10.a. In addition, the mask is less
noisy compared to the converged regularized mask in Fig
10.c. The number of CS measurements can be gradually
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TABLE I
COMPARISON OF THE AVERAGE BF LOSS OF MASK WITH PERFECT AOD PRIOR, UNIFORM MASK, THE MASK OBTAINED WITH UCB EXPLORATION, THE

MASK ACHIEVED BY PROBABILITY ESTIMATION WITH MASK REGULARIZATION, AND THE MASK WITH CHANGING NUMBER OF MEASUREMENTS.

Avg. beamforming
loss w.r.t opt. combining (dB)

Number of measurements
M = 25 M = 40 M = 50 M = 60 M = 80 M = 100

2D-CCS with perfect AoD prior 3.90 2.73 2.33 2.07 1.62 1.40
2D-CCS with UCB exploration 8.16 4.49 3.83 3.47 2.63 3.06
2D-CCS with regularized mask 6.09 4.05 3.75 3.39 2.72 2.35

2D-CCS with uniform mask 11.18 6.73 5.86 5.31 4.29 3.63
Regularized mask with M0 = 200,∆t = 100 5.37 3.68 3.28 3.22 2.55 2.13
Regularized mask with M0 = 200,∆t = 200 5.18 3.67 3.26 3.03 2.52 2.01
Regularized mask with M0 = 300,∆t = 100 5.07 3.56 3.38 3.00 2.47 1.96
Regularized mask with M0 = 300,∆t = 200 5.21 3.62 3.41 3.13 2.50 2.05
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Fig. 10. Mask convergence for the online learning using UCB exploration, decreasing the number of CS measurements, mask regularization, with M (or
Mmin) = 80.

reduced with online learning. The prior learned with our online
learning framework enables the BS to perform successful beam
alignment with fewer channel measurements than standard CS.

VI. CONCLUSION

In this paper, we proposed a site-specific online sensing
matrix learning and beam alignment solution in vehicular
communication. In a typical vehicular context, the AoD dis-
tribution can be structured due to the regularity of the vehicle
trajectories and stationary objects such as buildings and roads.
Leveraging such AoD distribution statistics in a vehicular
scenario, we proposed a novel online compressive sensing
framework using a 2D-CCS-based design. We formulated a
convex optimization problem that uses the learned AoD prior
to design a CS matrix that maximizes the approximate beam
alignment probability. We observed superior performance of
the AoD prior-aided sensing matrix design compared to either
the standard 2D-CCS without AoD prior or exhaustive beam
search. Using only 60 channel measurements, there was less
than 2 dB gap between the average beam RSRP of the pro-
posed approach and perfect CSI-aided optimal beamforming.

MmWave vehicular communication has specific channel
statistics that need to be exploited for wireless system design.
For future work, the design of the subsampling set in 2D-
CCS that is well-suited to the AoD prior will be investi-
gated. Another interesting topic is to leverage the potential
angular statistics related to the receiver side for fast vehicle

beam alignment. As discussed in Section II-B, AoA prior in
the vehicular context can be more complicated due to the
highly mobile vehicles and varying traffic conditions. Side
information such as vehicle locations or traffic conditions can
be used as context to improve the online beam codebook
optimization at the receiver side. For example, we can use
contextual bandits-based online learning solution given ap-
propriate side information. Furthermore, investigating other
priors that are based on beam RSRP is an interesting research
direction. In addition to the special street layout and specific
channel distribution, more information is already embedded
in connected vehicles. With side information such as location-
based situational awareness, the number of measurements can
further be reduced if the online learning can reveal the AoD
distribution conditioned on the observed side information.
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